Passive bistatic radar is a novel radar technology that passively detects targets without actively emitting signals. Since passive bistatic radar entails larger data volumes and computations compared to traditional active radiation radar, the development of hardware and software platforms capable of efficiently processing signals from passive bistatic radar has emerged as a research focus in this field. This research investigates the signal processing flow of passive bistatic radar based on its characteristics and devises a parallel signal processing scheme under graphic processing unit (GPU) architecture for computation-intensive tasks. The proposed scheme utilizes high-computing-power GPU as the hardware platform and compute unified device architecture (CUDA) as the software platform and optimizes the extensive cancellation algorithm batches (ECA-B), range Doppler and constant false alarm detection algorithms. The detection and tracking of a single target are realized on the passive bistatic radar dataset of natural scenarios, and experiments show that the design of this algorithm can achieve a maximum acceleration ratio of 113.13. Comparative experiments conducted with varying data volumes revealed that this method significantly enhances the signal processing rate for passive bistatic radar.
Loading....